
Lab 6 Report: Path Planning

Team 9

Nisarg Dharia
Zhenyang Chen
Meenakshi Singh

Kwadwo Yeboah-Asare Jr.

6.141/16.405 Robotics: Science and Systems

April 16, 2022

1

1 Introduction

Author: Meenakshi

Having a robust path planner is essential for autonomous systems to be able
to navigate. Given a starting location A and a goal location B, an ideal path
planner is able to determine if it is possible to navigate to the goal location.
There are several metrics that are considered when evaluating the efficiency of
generated path, such as the safety of the path, the total distance of the path,
and the time it takes for the planner to generate a path.

In lab 6, we focus on the particular use case of planning paths in a known en-
vironment. Given a map, we want to be able to give the robot a start and goal
destination, generate a path quickly and in real time and then follow the gen-
erated trajectory to reach that goal point. This process builds on some of the
previous work we did in the localization and path-following labs. The racecar
must be able to generate paths from its starting location, which we can deter-
mine using a particle-filter. We then use our pure pursuit controller to follow
the generated path to target localization.

In this lab, we implemented two different algorithms to generate a path: search-
based planning via A* and sample-based planning via Rapidly-Exploring Ran-
dom Trees (RRT). Overall, we found that A* takes more time to generate a
path as it explores more of the map, but conversely guarantees that it will re-
turn an optimal path if it exists. RRT on the other hand is faster in returning a
path and is more efficient in larger state spaces, but may not return the optimal
solution. Additionally, we found that the paths produced by A* were smoother
than those produced by RRT and had a smaller path-following distance error.
We tested the two algorithms for paths with short distances, medium length dis-
tances, and long distances at varying speeds and found that A* performs better
for the use case of Lab 6, since we have a known map of Stata provided to us
and it is possible to explore the whole map without excessive computational
cost.

2

2 Technical Approach

2.1 Path Planning

The goal of path planning was to find a safe and efficient path to get the racecar
from its current location to a goal position in a known map. To do this, we first
processed the given map to make it easier to run path-finding algorithms on.
Next, we converted our start and goal locations into the newly processed map’s
coordinate system. We then conducted either a search based algorithm known
as A* or a sample based algorithm known as rapidly-exploring random trees
(RRT) to find the desired path. Finally, we transformed the path coordinates
back into the world frame for the racecar to follow.

2.1.1 Map Processing

Author: Nisarg

In order to implement a path planning algorithm, we first needed to process the
map data into a format the algorithms were compatible with. To accomplish
this, we converted the 1-dimensional array of map data into a 2-dimensional
grid space. This allowed us to represent each location on the map as a set of
(u, v) coordinates, which could then be used as vertices for the path planning
algorithms.

Our next goal was to make the map safer, so that slight deviations in the car’s
position wouldn’t cause it to come into contact with the walls. This was done by
adding a small amount of padding to the occupied spaces of the map. For each
coordinate on the map that was occupied, we set the values of all spaces within
a distance d of the coordinate as occupied as well. As a result, the planned path
would keep a barrier of distance d between itself and the real wall, allowing
some buffer in case the car deviated slightly.

We also wanted to make sure that the racecar never wandered into any unex-
plored locations on the map. Thus, for any coordinate with a value of -1 to
signify unknown, we converted it into a value of 100 to represent occupied. This
ensured that the racecar never planned a path along a section of the map it
didn’t have enough information about.

Finally, in order to make search based algorithms less computationally expen-
sive, we discretized our map to reduce the number of vertices we needed to
explore. This was done by taking the average of each n x n square of points
on the map, and checking whether it was greater than a specified occupancy
threshold. If so, the square would be represented as occupied, and if not, it
would be represented as open space. This was particularly useful given that the
sample map of Stata basement contained 1,730 x 1,400 = 2,422,000 data points.
Using this method of discretization allowed us to reduce the number of vertices
by 1-2 orders of magnitude depending on the choice of n, with the new number

3

of vertices being

∥V ∥ = 2, 422, 000

n2
(1)

Note that for sampling based algorithms that don’t require discretization or for
maps with small passages where discretization may be limiting, setting n equal
to 1 would simply leave the map in it’s original level of granularity.

Figure 1: Illustration of the map before it was processed (left), after the walls
were thickened by 0.25 meters (center), and after all unknown areas were marked
as occupied (right)

2.1.2 Obtaining Start and Goal Locations

Author: Nisarg

Now that our map had been processed, we needed to convert the start and goal
location from their (x, y) position in meters on the original map O to coordinates
on the processed map P . To do this, we first took the orientation of O and used
it to build the rotation matrix

RP
O =

[
cos(θO) − sin(θO)
sin(θO) cos(θO)

]
(2)

From this, we then took the position we wished to convert (x, y), the rotation
matrix above, and the translation of the map origin (xO, yO) to calculate the
new position (x′, y′) in meters as[

x′

y′

]
=

[
cos(θO) − sin(θO)
sin(θO) cos(θO)

] [
x
y

]
+

[
xO

yO

]
(3)

To convert from meters to coordinates in the non-discretized map we simply
divided (x′, y′) by the resolution size of the map. Similarly, to convert the
resulting coordinates into the discretized map we divided the values again, this
time by the discretization size n.

Lastly, the resulting coordinates are a transformation from (x, y) to (v, u) in
the discretized map frame where v is the column and u is the row, so we can
just swap the values to get a more standard (u, v) representation of our start
or goal position in the processed map’s coordinates.

4

2.1.3 Search Based Planning: A*

Author: Nisarg

Given the start and goal locations on the processed map, our first approach to
path planning was to use a search based algorithm known as A*. The algorithm
works by keeping track of the shortest path to each vertex, and exploring the
paths in order of minimum distance traveled so far plus distance remaining to
the goal. The pseudocode for the algorithm can be found below.

Algorithm 1 A* Algorithm

openSet ← Set(start)
cameFrom ← Map()
cost ← Map(start: 0, default: ∞)
score ← Map(start: dist(start, goal), default: ∞)
while openSet is not empty do

current ← key of min(score)
if current == goal then

return reconstruct path(cameFrom, current)
end if
openSet.remove(current)
for each neighbor of current do

tempCost ← cost[current] + dist(current, neighbor)
if tempCost < cost[neighbor] then

cameFrom[neighbor] ← current
cost[neighbor] ← tempCost
score[neighbor] ← tempCost + dist(neighbor, goal)
if neighbor not in openSet then

openSet.add(neighbor)
end if

end if
end for

end while
return failure

For our implementation, we used each (u, v) coordinate in our discretized map
as a vertex. Each vertex was neighbors with the 8 or fewer coordinates im-
mediately adjacent to it, including diagonals. This made computations quicker
and increased efficiency, but it came with the tradeoff that our paths could only
extend in directions that were multiples of 45 degrees.

If a cell was unoccupied, the cost to reach is was simply the distance between
two vertices. However, occupied cells had a cost to reach of ∞. Meanwhile,
the heuristic was simply the Euclidean distance between the end of the path
and the goal. Note that this choice of heuristic would never overestimate the
remaining distance from the path end to the goal, and therefore ensured that
any path returned from A* would be optimal.

5

Finally, it is important to note that A* is a resolution complete algorithm, which
meant for a small enough discretization size n, the algorithm was guaranteed to
find the optimal path. In our case, when working on the map of Stata basement
with wall padding of 0.25 meters, this meant that for any discretization size of
6 or less, A* would always return the shortest path from start to goal when it
existed, making the algorithm very reliable.

Figure 2: Example path planned by the A* algorithm in Stata basement, with
a padding size of 0.25 meters. The green and red markers represent the start
and goal respectively, while the white line represents the planned path.

2.1.4 Sample Based Planning: RRT

Author: Zhenyang

Though A* is an efficient algorithm which guarantees to find a optimal path
given the map, it is hard to find a good heuristic distance function in high
dimensional space, and solving A* in a very large state space can be a slow
process (in worst case, the algorithm needs to go over the whole state space. To
address the shortcomings of A*, we also implemented a sample based planning
algorithm, rapidly-exploring random tree (RRT).

The basic idea of sample based planning is to randomly sample the points in
state space. Based on the sampled points and space information (in our case, the
map) we can try to find the feasible path with those sampled points. The prop-
erty of randomly exploring makes sampled based algorithm possible to explore
and know the big picture of environment faster than search-based algorithm,

6

especially in a large state space. The following code is the algorithm we used in
our racecar.

Algorithm 2 Rapidly-exploring Random Tree Algorithm

tree← ∅
start← startcoordinate
goal← targetcoordinate
K ← iterations
while N ≤ K do

Xsample ← RandomSample
Lnearest ← NearestLeaf(Xsample)
Xnew ← Steer(Xsample, Lnearest)
if ObstacleFree(Xnew, Lnearest) then

tree← Xnew

if XnewCloseto(goal) then
return tree

end if
end if

end while

Here, we first randomly sample a feasible point in the map which can not be
intercepted with obstacles. And then we will find the nearest leaf on the tree to
the new sampled point. However, due to the randomness of choosing point, it
is possible that we have a sample point far from the nearest leaf. If we simply
connect the leaf and its parent together, it may result in frequency overlap of the
path and obstacle and lower the efficiency of the algorithm. So we use ”steer”
function to determine how far the new leaf should be from the parent node. For
simplicity, we fix the steering distance value which is tested in the simulation in
the function. Finally, if nothing blocks the way of leaf and parent, we can add
the new leaf to RRT tree. And return the path from goal to start point when
we successfully sample a point near the target. Figure 3 demonstrates the path
generated by RRT which is not as smooth as A*, but still a feasible path.

2.2 Pure Pursuit

There are two parts to a working pure pursuit controller. The first is setting
the right speed and drive angles given a target location in the robots frame,
and the second is actually finding what point on the path the robot should be
targeting. This are completely separate tasks and can be designed as such.

2.2.1 Following a given target

Author: Kwadwo

To follow a target we need to use the relative position of the racecar and the
target to set an arc for the car which will meet the target point. As the car
gets closer to the path this relative vector changes and so does the cars desired

7

Figure 3: Example path planned by the RRT algorithm in Stata basement, with
a padding size of 0.25 meters. The green and red markers represent the start
and goal respectively, while the white line represents the planned path.

arc this allows the car to continually modify its trajectory based on where it is
looking on the path. The distance between the car and the point on the path
it see is known as the look ahead distance and this number is important for
calculations. I will outline the particular math used to calculate the desired
radius of the cars arc.

Figure 4: Geometry of pure pursuit problem

Figure 4 shows the geometry of the problem the car target point is place in the
frame of the car and the horizontal distance of the car from the target point is
used to calculate the radius of the arc required to meet that point.

x2 + y2 = l2

8

l here is our look-ahead distance

x+ d = r

r is the radius of our arc and d is the desired distance from the path, which in
this case is 0
The next step is to solve for the radius of the circle that connects the car and
the target point centered around the (x,0) in the car frame.

(tr − x)2 + y2 = t2r

tr

here is the turn radius, solvinng this gives us

tr =
l2

2x

with this turn radius we solve for the desired drive angle using

angle = arctan(
wheelbase

tr
)

However for our robot specifically the axis are such that x maps unto -y and y
maps unto x so we have to negate this angle to get the right value

angle = −arctan(wheelbase
tr

)

This gives us the drive angle for a given target relative to the robot, here is a
desmos of the process to play with and get a better understanding
DriveAngleCalcs.com.

2.2.2 Finding target on the path

Author: Kwadwo

Given a target we now know how to follow it, the next step is to place some
target on the path to follow. To achieve this we draw a circle around the car
with radius of the lookahead distance we are using. This circle intersects with
the path at some point and that becomes our target on the path to follow.
We then use the relative x position of the target in our pure pursuit. To find
this intersection of the path line and circle we parematerize the line between
the start and end points of the line.

P = P1 + t(P2− P1)

P1 being the start of the line and P2 being the end. This allows the variable
T to represent some point of the. With this parametrization the line hits the
circle when the distance between P and C the center of the circle is R.

P − C = R

9

https://www.desmos.com/calculator/psommr0cz2

Figure 5: lookahead circle intersecting with path

We then solve for the magnitude of this vectors which gives us two values of
t representing two intersections on the circle. Since the value of t goes from 0
to 1, 1 being the end of the line. We can pick the larger value and know the
intersection is ahead of us on the path.
Code outline below.

P1 = point1

P2 = point2

Q = car_pose

r = self.lookahead

V = P2 - P1

a = np.dot(V,V)

b = 2*np.dot(V,P1-Q)

c = np.dot(P1,P1) + np.dot(Q,Q) - 2*np.dot(P1,Q) - r**2

disc = b**2 - 4 * a * c

if disc < 0:

return None

sqrt_disc = np.sqrt(disc)

t1 = (-b + sqrt_disc) / (2 * a)

t2 = (-b - sqrt_disc) / (2 * a)

t = max(t1,t2)

target = P1 + t*V

This would work for one line segment and so we need to do this for whichever
line segment we are closest to on the path. To find this we find the minimum

10

distance from every line segment on our path and use the segment with smallest
distance as the path we are following.
Similar to the circle intersection we can parametrize the line between 0 and 1

P = P1 + t(P2− P1)

with this we can solve for the value of P which which gives an angle of 90 degrees
with the cars current location giving us the closest point to the line

P.(P3− P1) = 0 P3 being the cars position

This gives us a value of t which represents the closest point on the line to the
car. However we want only closest points on the actual path and not just the
extension of the line past the end and start point so we clip this t value between
0 and 1 and return it given us the closest point on the actual line. The mini-
mum of these distances gives us the line segment to follow. Code outlined below.

path_points = self.path_points

last_but_index = path_points.shape[0]-2

P1 = path_points[:-1,:]

P2 = path_points[1:,:]

P3 = car_pose

LVEC = P2 - P1

norm = np.linalg.norm(LVEC,axis=1)

t = np.einsum(’ij,ij->i’,LVEC,P3-P1)/(norm**2)

np.dot doesn’t have an axis input so you have to do this wonky thing

t = np.clip(t,0,1)

Limit measure of minimum distance to the actual line

min_points = P1 + t[:,np.newaxis]*LVEC

min_vecs = min_points - P3

min_dist = np.linalg.norm(min_vecs,axis=1)

start_ind = np.argmin(min_dist)

final_ind = start_ind + 1

There is one more step for the case of this problem. Because we are using a
lookahead radius the right line segment to choose may not necessarily be the
closest line segment. There may be situations where the path it is on is smaller
than length than the look ahead radius so we should be following the next path.
To fix this we pick the last point within our look ahead radius in the path ahead
of us as the start of the point.
Last step is place the target relative to the car. To do this we use the relative
angle between the car and the target point to place the target relative to the
car.
We use the sin of this angle and the magnitude of the distance between the
car and the target point to get the relative x which is what we need for our
controller
This process finally gives us the x location of the target point in the car frame.

11

Figure 6: picture of possible problem

Figure 7: Placing the target in the frame of the car

12

3 Experimental Evaluation

3.1 A* Performance

Author: Nisarg

In order to test the performance of A*, we recorded the time it took to produce
paths of various lengths given a variety of discretization sizes. For each path,
we took 3 trials and recorded the data in figure 8.

As expected, when the map is not discretized at all (n=1), the time to plan
long paths across Stata basement is prohibitively large for most applications.
In comparison, a discretization size of 5 can still produce paths in under a second
for some of the longest paths in Stata basement. Thus, as long as the paths are
wide enough, an appropriately chosen discretization size can keep the runtime
for A* reasonable. Additionally, the time to find a path with A* scales quadrat-
ically as path length increases. This means that while A* may be fine for short
planning applications, longer ones may result in excessively long planning times.

Overall, we can see that A* provides good time performance for maps where
the distances are short and the spaces are wide enough for large discretization
sizes. However, in applications where the path is narrow or extremely large, the
cost to run A* may make it unsuitable for time-sensitive planning tasks.

Path Length (Top) and
Discretization Size (Left) Short (1̃0m) Medium (3̃0m) Long (5̃0m)

1 0.444s 6.797s 56.912s
3 0.016s 0.360s 2.018s
5 0.008s 0.112s 0.544s

Figure 8: Average planning time (seconds) for A* on paths of various length
with various discretization sizes

3.2 RRT Performance

Author: Zhenyang

We repeat the experiment process for RRT algorithm and recorded the average
planning time for RRT. For each discretization size, we can see the planning
time of RRT increases, but not too much. This makes sense because RRT ran-
domly explores the environment which makes the difference of planning time for
long and short distance not distinguishable, but longer path still requires more
exploring efforts.

As discussed before, RRT will perform better when it comes to large state
space. Here we can provide more detailed comparison with data support. When
discretization size=1 (which means using the original map with size 1730*1400),
we can see a huge difference between RRT and A*, where RRT 50 times faster

13

than A* when planning a long path. But after discretizing with box size=3,
RRT has no significant time advantage compared to A*. So we can say, based
on the computational platform we have on the racecar, the two algorithms we
implemented show a difference when the scale of state space reach 106. If the
scale of the planning problem is smaller than this value(short path in large
space or in small space), we prefer using A* which has less time cost and always
find optimal solution. But when the problem scale is larger than this, RRT is
definitely a more reasonable choice for planning and will reduce the time cost
significantly.

Path Length (Top) and
Discretization Size (Left) Short (1̃0m) Medium (3̃0m) Long (5̃0m)

1 0.289s 0.722s 0.922s
3 0.560s 1.241s 1.969s
5 0.665s 1.076s 2.306s

Figure 9: Average planning time (seconds) for RRT on paths of various length
with various discretization sizes

3.3 Path Following Error

Author: Meenakshi

Another metric we used to evaluate the performance of the paths generated by
A* and RRT was the path following error. We calculated the minimum distance
between the goal path trajectory to follow and the ground truth position of the
racecar at various speeds. This error also indicates the ”smoothness” of the
generated paths.

Speed 1 m/s 2 m/s 3 m/s 4 m/s
A* Average Error 0.081m 0.079m 0.073m 0.086m
RRT Average Error 0.127m 0.118m 0.136m 0.122m

Figure 10: Average minimum distance between the path to follow and the
ground truth position of the racecar on paths generated by A* and RRT at
various speeds

Speed 1 m/s 2 m/s 3 m/s 4 m/s
A* Maximum Error 0.560m 0.561m 0.566m 0.727m
RRT Maximum Error 0.611m 0.711m 0.722m 0.669m

Figure 11: Maximum distance between the path to follow and the ground truth
position of the racecar on paths generated by A* and RRT at various speeds

We conducted trials at different speeds and calculated both the average min-
imum distance error (Figure 10) as well as the maximum distance error for

14

each algorithm (Figure 11). Notably, the largest distance errors occur at sharp
turns, where the angle of the turn was less than 90 degrees. Overall, we see that
for both average error and maximum error, A* had consistently lower distance
error, indicating that the paths generated by A* were smoother and that the
racecar was able to follow the path more closely.

15

4 Conclusion

Author: Meenakshi

Overall, we found that when comparing our current implementations of A* and
RRT, A* generated optimal paths for the map under 1 second for all three path
lengths that we tested when using a discretization size of 5. Meanwhile RRT
paths were generated much faster for discretization sizes that were smaller, due
to the larger state space that is explored in A* to guarantee an optimal path
versus the randomly sampled points used by RRT.

The racecar also had a higher distance error following the paths generated by
RRT as opposed to A*, due to the shape of the paths generated by RRT being
less smooth. As a result, there was more of an oscillatory path where the racecar
tended to overshoot the turns, resulting in a higher path following error for RRT.

In the future, we want to optimize both of these algorithms further. For the
pure pursuit controller, we plan to adjust the lookahead distance to account for
curvatures in the path. Additionally, we want to try testing different heuristics
for A*, such as Dubins curves, which provide a better representation of paths
for non-holonomic motion. We also want to test using different data structures
for A* to improve runtime of the algorithm. For RRT, we need to tune param-
eters to improve performance going forward. We also plan to implement RRT*,
which is an extension of RRT that returns the optimal path.

While there is room for improvement in optimizing our planning algorithm and
path following, we were able to successfully generate paths of varying distances
using two path planning algorithms. We then integrated these generated paths
with our localization and pure-pursuit controller to navigate the known map
at different speeds and evaluated their performance according to time taken to
plan the path and the smoothness of the path.

16

5 Lessons Learned

5.1 Meenakshi

This lab helped me learn about the usefulness of path planning algorithms and
how they are applicable to different situations. I was able to understand the
trade off between computational expense and correctness through our tests of
A* and RRT. I also learned more about how our work from previous labs inte-
grates and fits into the flow of controls.

From a communication standpoint, this lab helped me ease back into the flow of
things after I had been sick in the last lab. Because we were making up part of
Lab 5, it was a little tricky to balance both at the same time, but I am grateful
for how my team was able to communicate and handle everything. Even though
I still feel like I wasn’t able to contribute as much technically, I learned that
through being present and available for the team, I could still learn a lot about
the lab.

5.2 Zhenyang

As described on the GitHub page, this lab is probably the most rewarding part
of 6.141 so far. We implemented and compared the pros and cons of two useful
planning algorithms. A* demo a good performance in finding optimal result in
small state space, while RRT shows more efficient behavior in larger space. But
besides that, what intrigues me is knowing how we can build this complicated
and powerful racecar control system step by step and integrate everything to-
gether. Having a clear thoughts on the process and understand the key details
in every algorithms, in the whole system is essential. This is the challenging
part in engineering as well as the charming part. I hope I can keep learning to
be a better system engineer in the final challenge.

For the communication part, I am very happy that we have a smart and reliable
new teammate Nisarg joining us and Meenu gets well and can work with us
again. After having a tough week for lab5, we now have a more powerful team
in which we can work together to tackle challenges. It is good to see we build
the team dynamic again, and hope we can keep this momentum and move on.

5.3 Nisarg

On the technical side, this lab was very helpful in learning about the pros and
cons of various path planning algorithms. In particular, I was able to under-
stand how sample based algorithms can exhibit better performance than search
based one, but at the cost of correctness and reliability. I also learned how
choices of discretization lead to resolution complete algorithms, while proper-
ties of randomness leads to probabilistically complete algorithms.

17

From a communication perspective, this lab was quite unique in that I had to
join a new team. Through this, I gained a new perspective on how to approach
a lab in general, and also learned how to work with the different skill sets of my
teammates. Overall, this lab was great for integrating the best habits of my old
team with my new one to get the best of both worlds.

5.4 Kwadwo

This lab sort off settles some things I suspected with the last lab, that a full
team makes work much easier. As I had a significantly easier time with this lab.
I also improved my ability to explain code and math (In my opinion), I think I
did a pretty good job of that.

On the technical side of things I learnt a lot about vectorizing math with numpy
to perform actions on many points at once. I gained a better understand of
moving between the world frame and the robot frame. It might be useful in
future to have some function for that since we seem to do that much more than
I expected. Finally, I realized a simpler solution to problems works much better
especially for scale. My initial solution to target placing involved fitting a line
to the path and solving the intersection, which was iffy and had no benefits over
the current implementation.

18

	Introduction
	Technical Approach
	Path Planning
	Map Processing
	Obtaining Start and Goal Locations
	Search Based Planning: A*
	Sample Based Planning: RRT

	Pure Pursuit
	Following a given target
	Finding target on the path

	Experimental Evaluation
	A* Performance
	RRT Performance
	Path Following Error

	Conclusion
	Lessons Learned
	Meenakshi
	Zhenyang
	Nisarg
	Kwadwo

