Lab 5 Report: Localization
Team 9
Zhenyang Chen
Kwadwo Yeboah-Asare Jr.

Meenakshi Singh

6.141/16.405 Robotics: Science and Systems
April 25, 2022

1 Introduction

Author: Meenakshi

Localization is a problem within robotics that focuses on determining the posi-
tion of the robot within a known map. The goal of RSS Lab 5 was to understand
and implement the Monte Carlo Localization algorithm in three parts: the mo-
tion model, the sensor model, and the particle filter.

1. The motion model portion of the lab involved taking the wheel odometry
coming from integration of motor and steering commands and applying it
to the current position of the robot.

2. The sensor model portion of the lab involves taking the position of the par-
ticles determined by the motion model and assigning the particles weights
based on their likelihood. This step increases the chances of particles that
are more likely to represent the robot position being sampled on succes-
sive iterations. In our approach to the sensor model, we constructed a
probability look-up table where each column contained normalized Lidar
measurements dj and each row contains the distance z; from raycasting at
the particle. We did this in order to reduce the computational complexity
of having to recalculate probabilities for each particle.

3. The particle filter takes the results of the motion model and sensor model.
Using the odometry data and the motion model we update the particle
positions. Then, we use the sensor model to compute the particle proba-
bilities and resample the particles. For each update of the motion or sensor
model, we calculate the average particle pose and publish that transform.

2 Technical Approach
2.1 Motion Model

Author: Nana

For the lab we applied the method from the probabilistic robotics textbook to
get the position the robot in the world frame given an odometry.

The method comes in three steps:

1. Rotate the car in the direction of the odometry vector.
2. Move the car in the direction of the odometry using the dy and dx values

3. Rotate the car the remain degree to allow its total change in orientation
to match the odometry.

The equations for theses various steps are outlined below
First rotation in direction of odometry vector
Orot1 = arctan2(dy, dx)
magnitude of movement in direction of odometry
Otran = mag(dz, dy)
remaining rotation to get the correct orientation for the robot
Orot2 = do — Orot1

To add noise to the model we simply add some gaussian noise with a suitable
standard deviation to the dipetq, dy and dx values given by the odometry.
Here are images of the particles spreading out as the motion model progresses
without resampling.

Progression of particles without resampling

With resample particles stay clumped together at the location of the cars

2.2 Sensor Model

Author: Zhenyang

Introducion

After updating the estimated state for each particle, we will create measure-
ments for each particle. Theses measurements will be used to compare with the
real measurement at time t, provided by the Lidar on the car and tell us which
particle has the largest possibility to represent the current robot state. These
probabilities will be used in the resampling process when we build the particle
filter.

2.2.1 Probability of Sensor Model

The probability model of sensor contains several parts: gaussian noise, higher
probability of hitting objects closer to the robots, maximal range, and random
noise. These noises can be represented by the following equations:

D_g?) .
7 b -

0 otherwise

(1))
{1—2; if 0<z” <dandd#0

Pshort (Z/(;)‘xk m) = g
d o otherwise

(

. %
% if Zmam_egzk) Szmaa:

(4)
z €T ’m = .
Pmaz (2, [Tk, M) {0 otherwise

1 . (4)
@ p if 0< 2y, < Zmaz
Z) x 7m —_— max
Prand(2y " [Tk, M) {0 otherwise

p(Zz(:)|$k,m) = Qpit 'phit(zl(:)|xk7m) + Qshort 'pshort(zl(:)|xka m)+

AOmaz * Pmax (Z](CZ) |.Tk, m) + Qrand * prand(zl(:) ‘xka m)

2.2.2 Precomputed Sensor Model

In our application, we are interested in finding a probability that represent how
likely a Lidar measurement represents a real robot state. Where m is the given
map, xj is the real state and zj, is the measurement coming in.

n

plaler,m) = p(z ooy 2 Jor,m) = [p(el” |, m) 1)
i=1

When using the particle filter, we need to calculate this probability every time
step which involves in calculating n (number of the particles) probability. To

reduce the computational complexity, we will build a probability look up table
where the column is the distance from Lidar measurement d; and the row is
the "real” distance z; given by the particles. We built up a table with 201*201
dimension, start from dy = 0 and z; = 0. To make the probability reasonable,
we also normalized the Gaussian distribution and probability for each column.
And the figure below shows the what look up table looks like.

2.2.3 Evaluate function

For the evaluate function, we need to return probability value of each particle
using equation (1), given the estimated motion state and the Lidar measure-
ment. We first rescaled the state of particles and measurements of the Lidar,
turning them from meters to pixel. And then to make the probability read-
ing process more efficient, we utilized the slicing techniques provided by the
numpy.array. We tiled up the rescaled Lidar measurements data and used it as
a column indices and did the same for the particle states.

2.3 Particle Filter

After building the motion model and sensor, we combined them together to
make the whole particle filter. The idea is simple. Every time we receives
odometry data, we update the states of all particles using motion model. When
we receive Lidar data, we do the ray-casting and evaluate particles, which return
a probability weights for us.

2.3.1 Initialize Position

To initialize the position we publish the 2D position from Rviz to the local-
ization before we start running anything. All the particles are initialized in a
small radius around the initialized point the the motion model and re-sampling
are run. The motion model applies the odometry to the set of particles every
time it receives a new odometry and the re-sampling re-picks particles based on
which are more likely to be the correct position of the car.

2.3.2 Low variance re-sampling

: Author: Zhenyang

After testing our particle filter with a simple version of resampling, we realized
the particles will converge very fast during the resampling process and lose diver-
sity after several iteration. Though the variance of the particle set is decrease,
the variance of the particle set as an estimator of the true belief increase [1].
After reviewing textbook, we tried a new resampling algorithm with variance
reduction.

The basic idea of low variance resampling is to add a random offset when re-
sampling. In this way, the algorithm can cover the whole sampling space in
a more systematic and efficient way while following the probability distribu-
tion and avoid losing samples when there is no updating. The detail process of
this algorithm is shown below. Further experiments and comparisons with our
simple resampling algorithm will be discussed in the experiment part.

Algorithm Low_variance_sampler(X,, W):
X,

3
7= rand(0; M 1)
c=uf!

form =1to M do

1

2

3

4

£ i=1
6

7: U=r+(m—-1)-M~!
8 hil

Figure 1: Low Variance Resampling

D15
010
D.05

Figure 2: Precomputed Sensor Model

3 Experimental Evaluation

To test our localization on the real race car, we initialized the car in simulation
to the same position in simulation and moved the real car. Ideally the position
of the car in simulation matches that of the car in simulation and the particles
should also be centered on the simulation race car.

3.0.1 Angle and distance error

The graphs below are the the errors of the published position vs the actual
position of the car. These graphs are taken during various situations. Below is
a graph of the distance and angle error as the particles converge. We see that

1.0

T T
—— /pfierrorjangle/data
0.8 + —— /pfferror/distance/data
0.6
0.4
0.2 1
4, L

0.0 L —r

218.4 218.6 218.8 219.0 219.2 219.4

Figure 3: Errors converging

the the distance error converges more quickly than the angle. This is probably
due to the fact that the standard deviation for the noise added to the distance
and angle odometries are the same and this affects the angle much more since
the relative scale is much greater for the angle data.

We see a similar pattern during turns were the distance error barely changes
but the angle error swings wildly before settling down again.

T T T
| — /pfferrorfangle/data

01 —— /pfferror/distance/data
/ | \ J,

N H\
S \ I
%

439.0 439.2 439.4 439.6 439.8

Figure 4: Errors converging

3.0.2 Normal resampling vs Low Variance resampling

When comparing the two resampling methods. Numpys random choice with
weighted probabilities and the low variance resampling presented in the text-
book. The benefit of the low variance filter is it slows down the convergence and
avoids converging too early from the chart below we see one such case were the
angle and distance converged on the wrong value and stay there. More noise
could be added to fix this but it is inconsistent how much you might need to
add for different situations so a more slow convergences is more consistent.

—— /pf/error/angle/data

—— /pf/error/distance/data
04 Ipflerrorjold_angle/data
Ipfferror/jold_distance/data

Figure 5: Errors converging

3.0.3 Number of particles

The last test was the number of particles. The behaviour of the localizer did not
change however the publish rate of the average pose of the particles moved from
53hz to 48hz which is well above the 20hz mark mention in the lab workbook.

4 Conclusion

Author: Meenakshi

Over the course of lab 5, we learned about Monte Carlo Localization. We
first understood the mathematical theory behind the concepts of the motion
model, sensor model, and particle filter. Then, we implemented the models in
simulation and refined them until we were satisfied with their accuracy. Finally,
we tested our particle filter on the racecar in Stata basement and refined it.

5 Lessons Learned

Presents individually authored self-reflections on technical, communication, and
collaboration lessons you have learned in the course of this lab.

5.1 Meenakshi

Due to personal circumstances, I was unable to help with many of the technical
aspects of the lab early on. However, despite the beginning circumstances, I
was able to gain experience with collecting and processing data from recorded
rosbags. I also gained a better understanding of the challenges that come with
localization problems. Although I have a theoretical understanding of the model
utilized, I am not as familiar with the problems that came with testing it on the
robot. Another thing to improve moving forward is to document our progress
along the way in a clear manner because we had methodical approaches to
improve the performance of the particle filter based on testing, but the iterative
changes were not documented so looking at the code between versions can feel
like large gaps in knowledge.

My biggest takeaways from this lab is about the importance of communication
within the team during the face of external factors. I am very apologetic that
my situation contributed to the team falling behind. Even though I could not
control those external factors, I could have been more responsible by actively
communicating with my teammates so that the division of work was more fair
to them.

5.2 Zhenyang

The biggest lessons I learned from this lab is to see the large gap between
theory and engineering practice and see the importance of communication and
collaboration in an engineering challenge. Particle filter is a kind of Bayesian
filter using Mente-Carlo method to sample motion state and estimate the real
robot states. Though the idea seems simple, the mathemacical derivation looks
messy and straight forward. When it comes to implementation, we need to
deal with more realistic cases. For example, to reduce computation complexity,
we pre-compute the sensor model, and to mimic the real motion state of the
robot, we add noise in motion model. This details and tricks are not necessarily
included in the formulas, but it is definitely worth noting and thinking, and
they result in the correct performance in real application.

This week is challenging for me and for the team. For the last two weeks, I
lost connection with my teammates. One of them feels not well, the other one
decided to drop the class before briefing. This leads to a lag in progress and
makes me realize everyone is important and responsible in an engineering team.
I believe with coming back of my teammate and the join of new teammate, we
can do much better in the Lab6. Keep working, keep updating with others.

10

5.3 Kwadwo

Main takeaway is sometimes trying other methods for the sake of it can lead
to great results. After reading through the method outlined in the textbook, I
found it much easier to understand and implement than the rotation matrix.
Outside of that this lab was particularly challenge. We were largely left with
a team of two to complete the lab since one teammate fell sick and the other
dropped the class. If anything it did show me that having a full team is ex-
tremely important for any engineering project as with what we did manage to
do it would have been much easier to accomplish with a full team.

11

References

[1] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. 1SBN:
0262201623.

12

